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Abstract 

A geometrical method is described for counting and 
constructing all crystal families of  Euclidean spaces 
of dimension n from the different well known crystal 
families of  spaces E l, E 2, E 3 and the geometrically 
Z-irreducible families of each space. The definition 
of the geometrically Z-irreducible (gZ-irr.) or 
geometrically Z-reducible (gZ-red.) families is con- 
nected to the properties of  the character table of the 
holohedry of these families. Indeed, a crystal family 
of space E"  is said to be gZ-irr, if the n translation 
operators corresponding to a basis of  a primitive 
Bravais cell belong to the same irreducible representa- 
tion with integer entries of  its holohedry. In the 
opposite case, the family is said to be gZ-red. This 
method enables a name to be given to the crystal 
families. This name is connected to the geometrical 
construction, except for the families considered as 
irreducible. As far as possible, it also recalls the name 
of the crystal families of  spaces E ~, E 2 and E 3. 
Moreover, the WPV (Weigel-Phan-Veysseyre)  sym- 
bols of the holohedries can be defined thanks to the 
properties of the crystal cells. Finally, all the point- 
symmetry operations of  these groups and subgroups 
can be listed. 

Introduction 

In the Euclidean space E 1 (of dimension 1), there is 
only one crystal family: its cell is a (straight-line) 
segment, the symbol of the holohedry is rn and the 
two point-symmetry operations (PSOs) are the iden- 
tity (1) and the symmetry about a point mirror (m). 
This operation maps the point x onto ~, so it could 
be called 1. In fact, in one-dimensional space, the 
mapping 'symmetry about a point ' ,  i.e. 1, is the same 
as the reflection through a point mirror (m). In two- 
dimensional space, the mirror is a straight line and 
in three-dimensional space, it is a plane. 

Now let us consider the Euclidean space E 2 (of 
dimension 2). There are four crystal families: the 
rectangle family, in which the cell is a rectangle; the 
oblic family, in which the cell is a parallelogram; the 
square (or tetragon) family, in which the cell is a 

square; and the hexagon family,* in which the cell is 
a hexagon. 

The 'rectangle'  cell can be considered as the rec- 
tangular product  of two cell 'segments'  belonging to 
two orthogonal subspaces of dimension 1. 

As a consequence, we assume that the rectangle 
family is reducible of type 1 + 1 because E 2=  E 1 0  E 1 
(see § I). We recommend m_L m for the symbol of  
the holohedry instead of  2ram. With respect to the 
basis defined by the two sides of the rectangle cell, 
the metric tensort  is 

in which a and b are the squared norms of the two 
sides, al and a2, of the cell, i.e. a = Ilalll =, b -  Ila=ll =. 
The splitting up of the tensor is obvious. 

The symbol _1_ in m _L m means 'orthogonal '  if we 
consider the geometric properties of the cell and 
'direct product '  if we consider the algebraic properties 
of the group; this symbol immediately gives the order 
of  the point-symmetry group (PSG), i.e. 2 x 2 = 4 as 
well as all the PSOs, namely rex, m r, 2xy, 1, where x, 
y are the axes defining the vectors of the cell al ,  a2. 

The other three families are described as 'geometri- 
cally Z-irreducible '  (abbreviated to gZ-irr.). This 
property will be explained in § II. 

Let us now consider the Euclidean space E 3 (o f  
dimension 3). The six crystal families can be construc- 
ted in a similar way. 

(i) One cell is the rectangular product of  cells 
belonging to three subspaces that are orthogonal two- 
by-two, i.e. three copies of  space E 1. This family is 

* The same name must not be used for two different crystal 
families; hexagonal must be kept only for a crystal family of E 3. 

t Definition of a metric tensor. Let (al, a2, • .., a,) be the n 
vectors describing a primitive Bravais cell of a crystal family of 
space E". Then the metric tensor has for entries the scalar products 
a i ' a i , . . . ,  i.e. the squared norms of ai for the main diagonal: 
a--Ila~llL b--Ilazll2,.., and the scalar product of two different 
vectors for the other entries: 

A = a I • a z = Ila, [I [lazll cos (a,, a2) . . . . .  
where l[ II means the norm. 
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called 'orthorhombic'  in classical crystallography and 
2 / m m m  is the symbol of its holohedry. Nevertheless, 
to generalize to higher-dimensional spaces, the best 
name would be 'orthotopic 3d '  (orthotope is the name 
of the generalized rectangle) and m ± m ± m would 
be the best symbol for the holohedry of this family. 
As previously, this symbol gives the order of the PSG, 
2 x 2 x 2 = 8; it enables us easily to define its elements: 
rex; my; mz; 2xy; 2xz; 2yz; lxyz; 1; i.e. three reflections 
in a mirror plane, three twofold rotations in the planes 
xy, xz and yz, one homothetie of ratio -1  and of 
dimension 3 and the identity. This enables us to define 
the subgroups of this group as follows: three sub- 
groups of order 4: m J_ m, 2,2,2, 2_1_ m; three sub- 
groups of order 2: m, 2, 1; one subgroup of order 
1: 1. The metric tensor is 

/.. o,,o  
i_-0_- L-0], 
\o o ld  

where a, b and c are the squared norms of the sides 
of the cell. Owing to these properties, this family is 
reducible of type 1 + 1 + 1  (E 3= E~GE~O)E~). 

(ii) Three crystal cells can be regarded as the rec- 
tangular product of the crystal cell of the space E ~ 
(segment) and one of the three gZ-irr, cells of space 
E 2. The crystal cells built in this way are 'right prisms 
based on geometrically Z-irreducible crystal cells' of 
space E 2. This very long name, which fully explains 
the structure of the cell, is shortened to '-al', which 
is the abbreviation for 'orthogonal ' .  Consequently, 
the names of the families are: 'oblical': crystal family 
whose cell is a right prism based on a parallelogram; 
tetragonal: crystal family whose cell is a right prism 
based on a square; hexagonal: crystal family whose 
cell is a right prism based on a hexagon. We suggest 
the following WPV symbols* for the respective 
holohedries: 2 Z m instead of 2/m, order 2 x 2 = 4; 
4ram Z m instead of 4/ mmm, order 4 x 2 = 8; 6ram Z m 
instead of 6/mmrn, order 6 x2  = 12. The classical 
names of these families are: monoclinic; tetragonal; 
hexagonal. These crystal families are geometrically 
Z-reducible of type 2+  1 (E 3 = EEGEI) .  

(iii) Finally, we add two gZ-irr, families, triclinic 
and cubic, obviously of type 3. 

Before proceeding, two approaches will be dis- 
cussed: 

(1) consideration of every possible partition of 
space E" into subspaces E P, two-by-two orthogonal, 
of dimension p less than n; 

(2) definition of every gZ-irr, family of space 
E p for all values of the integer p less than or equal 
to n. 

* Weigel-Phan-Veysseyre symbols (We±gel, Phan & Veysseyre, 
1986). 

I. Geometric method for constructing crystal families 

Point (1) can be dealt with easily. All the partitions 
of integer n (dimension of space) are written as sums 
of positive integers. For instance, for number 6, there 
are 11 partitions: 6; 5+ 1; 4+2 ;  4+  1 + 1; 3 + 3 ;  3 + 2 +  
1 ; 3 + 1 + 1 + 1 ; 2 + 2 + 2 ; 2 + 2 + 1 + 1 ; 2 + 1 + 1 + 1 + 1 ;  
1 + 1 + 1 + 1 + 1 + 1. As an example, let us consider the 
partition 6 = 3 + 2 + 1, i.e. the splitting up of space E 6 
into E 3 G E 2 ~ ) E  1. Space E 3 contains two geometri- 
cally Z-irreducible crystal cells: triclinic and cubic. 
In space E 2, there are three of them: oblic, square 
and hexagon. Therefore, in the five-dimensional 
space, the partition E 3 t ~ ) E  2 leads to 2 x 3 = 6 crystal 
cells. Owing to their construction, these are called 
triclinic oblic, triclinic square, triclinic hexagon, cubic 
oblic, cubic square and cubic hexagon. In fact, the 
first name is the abridged form of orthogonal triclinic 
oblic, which means that the two polytopes are subcells 
belonging to two orthogonal subspaces. 

Now, we must add space E ~ ( to give E3G E20) El) .  
This results in six crystal families whose cells are right 
hyperprisms based on the above-mentioned six crystal 
cells. For these six crystal families, we suggest a 
shortened name: triclinic oblic-al; cubic square-al; 
and so on. Hence, we can define the WPV symbols 
of the holohedries of all these families. As an example, 
the holohedry of the crystal family 'triclinic square-al'  
of the six-dimensional space is 

/ 1  1 4mm ± rn ~ of order 2 x 8 x 2 = 32 
/ 

triclinic square right hyperprism based on . . . .  

If (x, y, z, t, u, v) denotes the orthogonal basis of 
space E 6 connected to thedifferent  partial cells, the 
PSOs of this group are: 1, lxy~ for the PSG 1; 1, 4,*~, 
2t,, mr+,, mr_,, mr, mu for the PSG 4mm; 1, m~ for 
the PSG m; and all the products of these elements. 

Now, let us consider the partition E 3 G E  3. The 
number of crystal cells corresponding to this partition 
is the number of combinations with repetitions of two 
elements (the 2 gZ-irr, crystal cells of space E 3) taken 
two at a time, i.e. 

2 3. 

These are triclinic-triclinic or di triclinic, triclinic- 
cubic and di cubic. The WPV symbols of the holo- 
hedries are, respectively: 

(i) 1 _L 1, of order 2 x 2 = 4 (PSOs: ixyz, ituv, i6, 1); 
(ii) i_l_ m3m, of order 2 x 48 = 96; 
(iii) m3rn ± m3m, of order 482 = 2304. 
All partitions of space E 6 a re  to be studied 

similarly. 
To finish with, we can give an example of a crystal 

family of space E 7 corresponding to the decomposi- 
tion E 3 ~  E 4. In s p a c e  E 3, we select the cubic family 
and in space E 4, the rhombotopic ( - I )  family. The 
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cell of the rhombotopic family is constructed from 
four equal vectors and the angle between two of them 
has a cosine of -¼ (Phan, Veysseyre & Weigel, 1988). 
The orthogonal product of these two polytopes gives 
a cell named 'cubic rhombotopic (-¼)'. The WPV 
symbol of the holohedry is m3m ± 2~3m, 102, of order 
4 8 x 2 4 0 =  11 520. We could describe these 11 520 
PSOs without difficulty but this would take a long 
time ! 

Table 1. Character table of  point group m ± m 

First line: the four  classes o f  con juga te  e lement  o f  this group.  
E :  identity.  
mx (and  my):  reflection th rough  a s traight  line. 
2xy: twofo ld  ro ta t ion  in the p lane  ( x y ) .  

m _1_ m E mx  my 2xy 

R 1 1 1 1 1 
R 2 1 -1  1 -1  x 
R 3 1 1 -1 -1 y 
R 4 1 -1  -1 1 

II. Geometrical Z-irreducible families 

A mathematical definition of the K-irreducibility or 
the K-reducibili ty (K being one of the domains Z, 
Q, R or C) is given by Brown, Billow, Neubilser, 
Wondratschek & Zassenhaus (1978). It is connected 
to the unimodular  n x n matrices of finite groups 
associated to a Z class. 

We use a slightly different concept of irreducibility 
connected to the geometry and the splitting up of the 
metric tensor of a crystal cell. For this reason, the 
adjective 'geometrical '  and the letter Z (Z being 
the set of positive or negative integers) are added to 
the word 'irreducibility'. Therefore, we define the 
geometrical Z-irreducibility of the holohedry of a 
crystal family (i.e. of the point group of maximal 
order). Actually, we define the geometrical Z- 
irreducibility of the cell of this family (gZ-irr. for 
short) and we will say that a family (or its cell) is 
gZ-irr, or gZ-red, in the opposite case. This definition 
is connected to the bases of the irreducible representa- 
tions of the holohedry of the family (Weigel & 
Veysseyre, 1991). 

Let x, y, z, t, u, v, . . .  be the n translation operators 
corresponding to a basis of a primitive Bravais cell 
of a crystal family of the n-dimensional space E". 
This family is said to be geometrically Z-irreducible 
(gZ-irr.) if all these operators belong to the same 
irreducible representation (IR) with integer entries 
of its holohedry. In the opposite case, the family is 
said to be geometrically Z-reducible (gZ-red.) Let us 
start by describing three simple cases of the space E 2. 

(i) The holohedry of the rectangular family is the 
group m Z  m of order 4. Let x ,y  be the basis of a 
primitive cell. The character table of group m I m is 
given in Table 1. There are four IR of dimension 1. 
Thanks to the theory of projectors, it is easy to prove 
that x belongs to the IR R2 and y to the IR R3. We 
say that this family is gZ-red, of type 1 + 1; it agrees 
with the correct symbol m ± m of the holohedry. 

(ii) The holohedry of the oblic family is the group 
2 of order 2. The character table of this group is given 
in Table 2. In this case, the two translation operators 
x and y belong to the same IR RE, which is not the 
identity representation. We say that this family is 
gZ-irr, of type 1,1. 

(iii) Now, we consider the square family; its 
holohedry is 4ram of order 8 and the character table 

Table 2. Character table of  point group 2 

See cap t ion  o f  Tab le  1. 

2 E 2xy 

R I 1 1 
R 2 1 -1  x , y  

Table 3. Character table of  point group 4mm 

First line: the five classes o f  con juga te  e lements  o f  this group.  
2C 4 = {4~y, --1 4xy } (fourfold rotation in the plane xy), 
2or = {m:,,  my} ,  2Or'---- {mx+y , m x _ y  }. 

4 r a m  E 2c4 C2 2o" 2 a '  

A I 1 1 1 1 1 
A 2 1 1 1 -1  -1  
B t 1 -1  1 1 -1  
B 2 1 -1  1 -1  1 
E 2 0 - 2  0 0 (x, y)  

is given in Table 3. The two translation operators x 
and y belong to the same IR of dimension 2. We say 
that this family is gZ-irr, of type 2. 

In space E 2, it is obviously the only possible way 
of splitting up. The four crystal families are classified 
as follows" the rectangle family is gZ-__rred, of type 
1 + 1; the oblic family is gZ-irr, of type 1,1; the square 
family and the hexagon family are gZ-irr, of type 2. 

However, if the dimension of space increases, the 
number of different types of gZ-irr, increases too and, 
in a space of even dimension, this number quickly 
increases owing to the occurrence of new point- 
symmetry operations such as double or triple rota- 
tions [5]2, [7 ]3 , . . .  (Weigel, Veysseyre, Phan, Effantin 
& Billiet, 1984) and also to the possibilities for two 
planes or two subspaces to be monoclinic or diclinic. 
In contrast, the case of spaces of odd dimension 
is easier. Indeed, from space E 4 to space E 5, for 
instance, we add only one dimension; then the 
only possibilities for new crystal cells are 'right 
hyperprisms based o n . . . ' .  

Let us study space E 4 in detail, so that we may list 
the five types of gZ-irreducibility. As previously, 
(x, y, z, t) denotes the basis connected to a crystal cell 
of space E 4. 

(i) We first consider the character table of the 
hexaclinic family whose WPV symbol for the 
holohedry is 14, of order 2; the four vectors (x, y, z, t) 
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Table 4. Character table of point group 2, 66*, 2 of 
order 12 

First line: the six classes of  conjugate elements of  this group. 
Ct = {E} = identity,  
C~={i~}, 

3C3={  2 . . . .  2,; 2y,2z-,; 2x_:.; z+t}, 
3C4= {2x_2>.; z; 22~_y; t; 2x+y; z+t}, 
2C5= ~. t . {3x,.3 vs, 3~.~3 ~} ,  

__ I I . - -1  - -1  
2C 6 - {6xv6w, 6x>.6vs}. 

For  a complete explanat ion of  these symbols, see Phan et al. (1988). 
1 1 6xy6~,~ is a double crystallographic rotation: by 27r/6 in the plane 

xy and 2~'/6 in the plane 3,6 (supplementary and orthogonal  to 
the plane xy). 

2, 66*, 2 C~ (:'2 3(?3 3C4 2C5 2C6 

R 1 1 1 1 1 1 1 
R 2 1 1 -1 -1 1 1 
R 3 1 -1 1 -1 1 -1 
R 4 1 -1 -1 1 1 -1 
R 5 2 -2  0 0 -1 1 
R 6 2 2 0 0 -1 -1 

(x,y)(x,t) 

belong to the same IR of dimension 1, which is not 
the identity representation. We say that this family is 
gZ-irr, of type 1,1,1,1. In space E n, whatever the 
dimension n, only one crystal family has this property: 
it is the 'maxiclinic' family whose name recalls the 
number of angular parameters of the metric tensor 
of the cell: oblic (E2), triclinic (E3), hexaclinic (E4), 
decaclinic ( E S ) , . . . .  This type is denoted 1 ,1 , . . . ,  1 
with n numericals 1 for space E". 

(ii) We next consider the character table of the 
holohedry of the hypercubic family. The four vectors 
(x, y, z, t) belong to an IR of dimension 4: the IR 
labelled Rx~ (Veysseyre, Weigel, Phan & Effantin, 
1984). We say that this crystal family is gZ-irr, of 
type 4. Another two crystal  families have this 
property: the rhombotopic (-¼) and the di 
isohexagon families (Phan et al., 1988). In space E", 
this type will be denoted n and it means that the n 
vectors (x, y, z , . . .  ) belong to the same n-dimensional 
IR with integer entries. In the space E s there are two 
families of this type" rhombotopic (-½) and hyper- 
cubic five-dimensional, whereas there are three in 
space E6: tri iso hexagon, rhombotopic ( - I )  and 
hypercubic six-dimensional. 

(iii) Let us now study the character table of the 
monoclinic di hexagon family (Table 4). The WPV 
symbol of the holohedry is 2, 66*, 2. The vectors (x, y) 
or the vectors (z, t) are possible bases of the IR of 
dimension 2 labelled R5. We say that this family is 
gZ-irr, of type 2,2. Another crystal family belongs to 
this type: the monoclinic di square family. In space 
E 6, three families belong to this type, denoted 2,2,2 
(monoclinic tri square and monoclinic tri hexagon 
families) or 3,3 (monoclinic di cubic family). 

(iv) The character table of the diclinic di hexagon 
family of E 4 is given in Table 5. In this case, the same 
combinations x - ½ ( 1 + i3 U2)y; z - ½(1 + i31/2) t of the 
four vectors (x, y, z, t) belong to the same IR with 

complex entries, whereas the combinations x -  
½(1 - i3~/Z)y and z -½(1 - i3~/z)t belong to an IR that 
is the complex conjugate of the previous one. Then, 
(x, y) and (z, t) are possible bases of a gZ-irreducible 
representation with integer entries Rs03 R 6 ,  which is 
the direct sum of the two previous ones. We suggest 
for this type of gZ-irr, the notation 2,2'. Another 
family of space E 4 belongs to this type (the diclinic 
di square family) and two families of space E 6 
(diclinic tri square, diclinic tri hexagon families). 

(v) The last type of irreducibility is exemplified by 
the monoclinic di isohexagon family, of space E 4. 
The WPV symbol of its holohedry is 12 12 A 2 and its 
order is 24 (see its character table, Table 6). Thanks 
to the theory of projectors, we find linear combina- 
tions of the four vectors (x, y, z, t) with irrational 
entries as possible bases for two IR, namely Rs and 
R9, but (x, y, z, t) are the bases of the direct sum of 
these two, viz R8• R9. For this reason, we say that 
this family is gZ-irr, of type 4'. 

As a conclusion, we summarize the different types 
of irreducibility. We recall that (x, y, z , . . . )  are the 
bases of the crystal cell. The character table is that 
of the holohedry. 

Type 1. Denoted 1,1,1, . . .  ,1 (n numbers 1 in space 
E"):  the n vectors x,y, z , . . .  belong to the same 
one-dimensional IR (not the identity IR). 

Type 2. Denoted n in space E":  the n vectors 
belong to one n-dimensional IR with integer entries. 

Type 3. Denoted 2,2 in space E 4, 2,2,2 or ~ in 
space E 6 and so on. In space E 4, for instance, the 
vectors (x, y) and (z, t) are possible bases of the same 
two-dimensional IR with integer entries. 

Type 4. Denoted 2,2' in space E 4 or 2,2,2' in space 
E 6 . . . .  In space E 4, for instance, the linear combina- 
tions with complex entries of vectors (x, y) and (z, t) 
belong to two complex conjugate IRs of dimension 
1. Therefore, (x, y) and (z, t) are possible bases of a 
two-dimensional IR with integer entries, the direct 
sum of the two previous ones. 

Type 5. Denoted n' in space E". The definition is 
similar to the previous one but we consider linear 
combinations of vectors (x, y) (z, t) . . .  with irrational 
entries and we consider IRs with irrational entries 
whose direct sum is an n-dimensional IR with integer 
entries. 

All the irreducible families (and the reducible ones) 
will be listed in tables in papers XII, XIII and XIV 
for each type of irreducibility and for each space 
E l . . .  E 7. 

III. Application: how to define the type of a 
gZ-red, family 

The classification of the gZ-irr, families enables us 
to study the gZ-red, families and to define their type. 
We explain this method through the example of the 
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Table 5. Character table of  the cyclic point group 66* of  order 6 

66* E i4 

R l 1 1 
R 2 1 -1  
R 3 1 1 
R 4 1 1 
R 5 1 -1  

R 6 1 -1  

Rs0) R 6 2 - 2  

Firs t  l ine :  the  six classes o f  c o n j u g a t e  e l emen t s .  
e = exp (2i7r /6)  =½(1 + iv/3) 

14 = h o m o t h e t i e  o f  ra t io  - 1  a n d  o f  d i m e n s i o n  4. 

3 - t 3 - 1  3t31 6-16-1  616 t 

1 1 1 1 
1 1 --1 --1 

e 2 e 4 e 4 e 2 
e 4 e 2 e 2 e 4 
e 2 e 4 e e 5 

e 4 e 2 e 5 e 

--1 --1 1 I 

Table 6. Character table of  point group 12 12 ^ 2 

Firs t  l ine:  the  n i n e  classes o f  c o n j u g a t e  e l e m e n t s  o f  this  g roup .  

6 C  2 = {6 t w o f o l d  ro ta t ions} .  
6 C  3 = {6 t w o f o l d  ro ta t ions} ,  
2 C  5 = {4141; 4-14-1},  

2C6 = {4t4t ;  4-14-1},  
2C7 = {6t61; 6 - 1 6 - t } ,  

2 C  8 = {3t31; 3 -13 - t} .  

12 12^  2 E 6 C  2 6 C  3 i 4 2 C  5 2 C  6 2 C  7 2 C  8 2 C  9 

R I 1 1 1 1 1 1 1 1 1 
R 2 1 1 - 1  1 - 1  1 1 - 1  - 1  
R 3 1 -1  -1  1 1 1 1 1 1 
R 4 1 - I  1 1 - 1  1 1 - 1  - 1  
R 5 2 0 0 2 - 2  -1  -1  1 1 
R 6 2 0 0 2 2 -1  -1  -1  -1  
R 7 2 0 0 - 2  0 2 - 2  0 0 
R 8 2 0 0 - 2  0 -1  1 3 t/2 - 3  t/2 
R 9 2 0 0 - 2  0 -1  1 - 3  t/2 3 t/2 

R s ~  R 9 4 0 0 - 4  0 - 2  2 0 0 

x-~-(1 + i3 t /a)y;  
z -~-(1 + i3 t / z ) t  

x -  ½(1 - i31/2)y; 
z-~-(1 - i31/2)t 

(x, y ) ( z ,  t) 

(x, y, z, t) 

2 ± i ± m  E 

R t 1 
R 2 1 
R 3 1 
R a 1 
R 5 1 
R 6 1 
R 7 1 
R 8 1 

Table 7. Character table of  point group 2_1_ 1 ± m 

Firs t  l ine:  classes o f  c o n j u g a t e  e l emen t s .  
2xy is the  r o t a t i o n  t h r o u g h  a ng l e  ~" in  the p l a n e  xy .  

lztu is the  t h r e e - d i m e n s i o n a l  i n v e r s i o n  in  the space  ( z t u ) .  

T_xyztu is the  f i v e - d i m e n s i o n a l  i n v e r s i o n  in  the  space  x y z t u .  
16 is the  to ta l  h o m o t h e t i e  o f  ra t io  ( - 1 )  in  the  s i x - d i m e n s i o n a l  space .  

2xy l ztu l zyztu l'Flv l xyo I . . . .  16 

1 1 1 1 1 1 1 
--1 1 --1 1 --1 1 --1 

1 --1 --I 1 1 - 1  --1 
--I --1 1 1 --1 --1 1 

1 1 1 --1 --1 --1 - 1  
- 1  1 - 1  - 1  1 - 1  1 

1 - 1  - 1  - 1  - 1  1 1 
- 1  - 1  1 - 1  1 1 - 1  

x,y  
z~ l, U 

oblic triclinic family of space E 6. The WPV symbol 
of its holohedry is 2_1_ 1_1_ m and its order is 2 × 2 x 2 = 
8. Indeed, 2 is the symbol of the holohedry of the 
oblic family in E 2, T is the symbol of the holohedry 
of the triclinic family in E 3, hence l_l_m is the 
symbol of the holohedry of the triclinic-al family in 
E 4 whose cell is the right hyperprism based on the 
oblic parallelepiped of the p_hysical space. The eight 
PSOs are: 1; 2xy; lz_tu; my; lxyztu; lxyv, lztuo, 16- The 
three subgroups 2, 13 and rn are isomorphic abstract 
groups. Therefore, they have the same abstract 
character table, Table 2. The character table of group 
2_1_ T_I_ m is easily obtained as the tensorial product 

of three similar character tables of Table 2; it is given 
in Table 7. 

x or y are possible bases of the one-dimensional 
IR R2, hence the oblic family is gZ-irr, of type 1,1. 
z, t or u are a possible basis of the one-dimensional 
IR R3, hence the triclinic family is gZ-irr, of type 
1,1,1; v is the basis of the one-dimensional IR Rs, 
hence this family is gZ-irr, of type 1. Therefore, the 
oblic triclinic-al family is gZ-red, of type 1,1 + 1,1,1 + 
1. It corresponds to the splitting up of space E 6 into 
E6= E2@ E3@ EI 

All crystal families of space E n, whatever the 
dimension n, can be studied similarly. 
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Concluding remarks 

In § I, we explained a geometric method for construct- 
ing crystal families of space E '~ out of the different 
families of spaces E 1 and E 2 and the gZ-irr, families. 
The irreducible families were studied in detail in § II 
and five types of irreducibility were exhibited. 

This method enables us to give a name to the crystal 
family connected to their construction. Then, we 
easily deduce the WPV symbols of the holohedries. 
As for the gZ-irr, family, the name explains their 
construction or sometimes the PSOs that characterize 
the families. 

In forthcoming papers, we state systematic rules 
for giving a name to crystal families and we list all 
crystal families of spaces E 1, E 2, E 3, E 4, E 5 (paper 
XII; Weigel & Veysseyre, 1993), space E 6 (paper 
XIII) and space E 7 (paper XIV). 

The authors thank E. F. Bertaut for many helpful 
and stimulating discussions. 
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Abstract 

In paper XI [Veysseyre, Weigel & Phan (1993). Acta 
Cryst. A49, 481-486], the definition was given of the 
geometrically Z-irreducible and the geometrically Z- 
reducible crystal families of the n-dimensional space 
and a general method was described for constructing 
all crystal families. In this paper, systematic rules are 
stated for giving names to the crystal families and 
these are listed for spaces E l, E 2, E 3, E 4 and E 5. 

Introduction 

The aim of this paper is to explain how the geometri- 
cally Z-reducible (gZ-red.) property of a crystal 
family enables us to give a name to these families 
through some examples. This paper is divided into 
three sections: 

(i) § 1 is concerned with the counting (i.e. the num- 
ber) of all crystal families from one- to seven- 
dimensional spaces; 

(ii) § 2 expresses strict rules that lead us to assign 
correct names to the gZ-red, crystal families of E" 
and mainly to spaces of dimensions one to five; 

0108-7673/93/030486-07506.00 

(iii) § 3 explains the connection between the transi- 
tive crystallographic rotations (Bertaut, 1988) and the 
geometrically Z-irreducible (gZ-irr.) families and 
explains the choice of their names too (for the one- 
to five-dimensional spaces). 

I. Counting of all crystal families of space E" 
The study of all partitions of space E" into subspaces 
that are two-by-two orthogonal enables us to describe 
all gZ-red, crystal families. The type of the gZ-reduci- 
bility is given by the dimension of each space occur- 
ring in the splitting of space E" and by the type of 
the irreducibility of the crystal family (Veysseyre, 
Weigel & Phan, 1993). 

For instance, if we consider the partition E 6=  E3~) 
E2• E l, we say that the type of crystal family built 
in this way is (3) + (2) + 1, where (3) means 3 or 1,1,1 
and (2) means 2 or 1,1. A general formula will be 
given § 2. In fact, we can select in space E 3 one  of 
the two gZ-irr, families and in space E 2 one of the 
three gZ-irr, families (Table 1) and obviously in space 
E 1 the only gZ-irr, family, viz the segment. So, we 
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